a9y United States
a2y Patent Application Publication o) Pub. No.: US 2017/0371767 Al

Moniz et al.

US 20170371767A1

43) Pub. Date: Dec. 28, 2017

(54)

(71)

(72)

(21)

(22)

(63)

DEBUGGING OPTIMIZED CODE USING FAT
BINARY

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Michael J. Moniz, Ottawa (CA); Ali 1.
Sheikh, Sunnyvale, CA (US); Diana P.
Sutandie, Markham (CA); Srivatsan
Vijayakumar, Ottawa (CA); Ying Di
Zhang, Redwood City, CA (US)

Appl. No.: 15/705,317
Filed: Sep. 15, 2017

Related U.S. Application Data

Continuation of application No. 15/043,667, filed on
Feb. 15, 2016.

100
/_

Publication Classification

(51) Int. CL
GOGF 11/36 (2006.01)
GOGF 9/45 (2006.01)
(52) U.S. CL
CPC oo GOGF 11/3624 (2013.01); GOG6F 8/41
(2013.01); GO6F 8/53 (2013.01)
(57) ABSTRACT

Embodiments of the present invention provide a method,
computer program product, and system for debugging opti-
mized code. The system includes a FAT binary, wherein the
FAT binary comprises a non-optimized native code and an
internal representation of a program’s source code. An
optimus program 1s configured to transform the internal
representation of the program’s source code into a fully
optimized native code. The system also 1includes an
enhanced loader, wherein the enhanced loader 1s configured

to communicate with a debugger to determine a type of code
to load.

TETL)

110

COMPILER
120
FAT BINARY
NON-OPTIMIZED NATIVE
wwwww CODE 122
WCODE 124

130

150

k, .

OPTIMUS PROGRAM

OPTIMIZED NATIVE CODE

140

| LOADER

160
DEBUGGER




Patent Application Publication

100
~

Dec. 28, 2017 Sheet 1 of 3

US 2017/0371767 Al

130

COMPILER

110

I A L e e e e B [ENEREES [FENEEY)

NON-OPTIMIZED NATIVE
CODE 122

WCODE 124

OPTIMUS PROGRAM

Py P P

e e

) ) Y T

140

i 150
3 LOADER

| 160
DEBUGGER l ;

FIG. 1



Patent Application Publication Dec. 28, 2017 Sheet 2 of 3 US 2017/0371767 Al

200

o T
M&.ﬁ S DEBUGGER _
~~_ ENABLED? _~~

NO YES

204 206

_ LOAD OPTIMIZED LOAD NON-OPTIMIZED
NATIVE CODE NATIVE CODE

FIG. 2



¢ Ol

US 2017/0371767 Al

1INAO SNOILVOINAWINODO

Dec. 28, 2017 Sheet 3 of 3

4OVd0l1S
INALSISHdd

]

“ NV &
/. 80¢

Ole

AHOWIN

r 90¢

(S)3DIA3A
TYNY3LXF

A

(S)3OV4HILINI O/

A /.N_‘m

(S)40SSIANOXd

1481

0ct

AV 1dSId

00¢

Patent Application Publication

CCe u



US 2017/0371767 Al

DEBUGGING OPTIMIZED CODE USING FAT
BINARY

BACKGROUND OF THE INVENTION

[0001] The present mnvention relates generally to the field
of static language debugging, and more particularly to using
a FAT binary to efliciently debug optimized code without the
need to rebuild the non-optimized version of the code.

[0002] In computing, an optimizing compiler 1s a compiler
that tries to minimize or maximize some attributes of an
executable computer program. In general, a computer pro-
gram may be optimized so that it executes more rapidly, or
1s capable of operating with less memory storage or other
resources, or draws less power. Compiler optimization 1s
generally implemented using a sequence ol optimizing
transiformations, 1.¢., algorithms, which take a program and
transform 1t to produce a semantically equivalent output
program that uses fewer resources.

[0003] Debugging is the process of finding and resolving
bugs or defects that prevent correct operation of computer
soltware or a system. Debugging tends to be harder when
various subsystems are tightly coupled, as changes 1n one
may cause bugs to emerge i another. While writing an
application, a developer will recompile and test often, and so
compilation must be fast. Non-optimized code has a corre-
lation between source code and the object code which
cnables etlicient source level debugging. However, the cor-
relation 1s not applicable for optimized code. Optimized
code 1s rearranged and modified during the optimization
process, which makes it diflicult to perform source level
debugging. This 1s one reason most optimizations are delib-
erately avoided during the test/debugging phase.

SUMMARY

[0004d] A method for debugging optimized code, the
method comprising the steps of: 1n response to receiving a
source code of a program, generating, by one or more
processors, a FAT binary, wherein the FAT binary contains
a binary and an intermediate code; determining, by one or
more computer processors, whether a debugger 1s enabled;
and 1n response to determining that the debugger 1s enabled,
loading, by one or more computer processors, the generated
binary into a memory.

[0005] A computer program product comprising: a coms-
puter readable storage medium and program instructions
stored on the computer readable storage medium, the pro-
gram 1nstructions comprising: program instructions to, 1n
response to receiving a source code of a program, generate
a FAT binary, wherein the FAT binary contains a binary and
an intermediate code; program instructions to determine
whether a debugger 1s enabled; and program instructions to,
in response to determining that the debugger 1s enabled, load
the generated binary into a memory.

[0006] A debugging system comprising: a FAT binary,
wherein the FAT binary comprises: a non-optimized native
code; and an intermediate code; an optimus program,
wherein the optimus program 1s configured to transform the
intermediate code to an optimized native code; an enhanced
loader, wherein the enhanced loader 1s configured to deter-
mine a type of code to load; and a debugger.

Dec. 28, 2017

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 1s a functional block diagram illustrating a
computing device, 1n accordance with an embodiment of the
present 1nvention;

[0008] FIG. 21s a flowchart depicting operational steps for
determining the current work mode and loading the binary
that provides the best performance, 1n accordance with an
embodiment of the present invention; and

[0009] FIG. 3 1s a block diagram of internal and external
components of a computer system, 1n accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION

[0010] Debugging optimized code 1s a challenging
dilemma 1n software development. Non-optimized code has
a correlation between source code and the object code which
enables source level debugging. However, the correlation 1s
not applicable for optimized code. Optimized code 1s rear-
ranged and modified during the optimization process, which
makes 1t diflicult to perform source level debugging. As a
consequence, developers are leit with two options. First, for
cilicient debugging, the code can be maintained in non-
optimized form. Second, if performance 1s a critical part of
the program, the program can be compiled with optimization
ecnabled, but will result in decreased debugging productivity.
Furthermore, 11 optimization 1s enabled, developers need to
recompile their code with non-optimized settings to enable
source-level debugging. Embodiments of the present inven-
tion provide systems and methods for loading the proper
binary based on the current compiler phase, which allows a
developer to have an optimized program without being
required to rebuild the non-optimized version of the code for
the purpose of debugging.

[0011] The present mvention will now be described 1n
detail with reference to the figures. FIG. 1 1s a functional
block diagram 1llustrating a computing device 100, 1n accor-
dance with one embodiment of the present invention. FIG.
1 provides only an illustration of one implementation, and
does not 1imply any limitations with regard to the environ-
ments 1n which different embodiments may be implemented.
Many modifications to the depicted environment may be
made by those skilled 1n the art without departing from the
scope of the invention as recited by the claims. In an
exemplary embodiment, computing device 100 includes
compiler 110, FAT binary 120, optimus program 130, opti-
mized native code 140, loader 150, and debugger 160.

[0012] Compiler 110 1s a computer program that trans-
forms source language written 1 a programming language
(source code) into another computer language (object code).
Developers compile a program normally 1n compiler 110.

Compiler 110 produces FAT binary 120.

[0013] FAT biary 120 1s a computer executable program
which has been expanded with code native to multiple
instruction sets which can consequently be run on multiple
processor types. In this exemplary embodiment, FAT binary
120 enables machine-level optimization, which increases the
performance of a program. FAT binary 120 decreases turn-
around time when there i1s an issue, or bug, because the
developer already has access to a non-optimized version of
the code. FAT binary 120 includes a binary, non-optimized
native code 122, and an intermediate representation of the
program, WCODE 124. Non-optimized native code 122 1s
executable object code, produced by compiler 110 from a




US 2017/0371767 Al

developer-written source code. WCODE 124 1s a smaller
and obfuscated internal representation of the program’s
source code. WCODE 124 contains all the semantic infor-
mation of the source code such that a user can perform
optimizations on it as if 1t were freshly compiled. It should

be appreciated that 1n this exemplary embodiment, WCODE
124 1s created for a single processor architecture.

[0014] Optimus program 130 is software capable of trans-
forming obiuscated source code into a fully automated
native code. Optimus program 130 takes advantage of
machine architecture to produce the maximum level of
optimization. Optimus program 130 uses WCODE 124 to
produce optimized native code 140. Loader 150 loads opti-
mized native code 140 into memory (not depicted 1n FIG. 1)
during live production mode (1.e., operational mode). During
debugging mode, loader 150 loads non-optimized native
code 122 directly into memory.

[0015] Loader 150 places programs into memory and
prepares them for execution. Loader 150 1s responsible for
loading the executable contents of FAT binary 120 into
memory and preparing the executable contents to be run. In
this exemplary embodiment, loader 150 accesses non-opti-
mized native code 122 and WCODE 124 1n FAT binary 120.
Loader 150 communicates with debugger 160 to determine
which binary to load: either non-optimized native code 122
from FAT binary 120 or optimized native code 140. In this
exemplary embodiment, loader 150 loads optimized native
code 140 into memory during live production mode. Opti-
mized native code 140 1s a tully optimized native code that
1s tuned for the machine architecture. It should be appreci-
ated that 1n debugging mode, loader 150 loads non-opti-
mized native code 122 into memory for use by debugger 160
during debugging.

[0016] Debugger 160 1s a computer program that allows a
program to execute and inspects each step during execution
(e.g., GNU Debugger). When debugger 160 1s enabled,
loader 150 will load non-optimized native code 122 1nto the
memory. In one example, a debugging tlag can be turned on
when debugger 160 1s enabled to communicate to loader 150
of the current debugging mode.

[0017] FIG. 2 1s a flowchart, 200, depicting operational
steps for determining the current work mode and loading the
binary that provides the best performance, 1n accordance
with an embodiment of the present invention.

[0018] In step 202, loader 150 determines if the user 1s
debugging the program. In this exemplary embodiment,
loader 150 communicates with debugger 160 to determine 1
debugging mode 1s enabled. In one example, when debugger
160 1s on, a flag 1s added to tell loader 150 that the
debugging mode 1s enabled. It should be appreciated that the
current work mode can either be debugging mode or live
production mode. Loader 150 determines the current work
mode and automatically loads the applicable version of the
code.

[0019] If, in step 202, loader 150 determines that debugger
160 1s not 1n debugging mode (1.e., 1t 1s 1n live production
mode), then 1n step 204, loader 150 loads optimized native
code 140 1nto memory. It should be appreciated that optimus

program 130 produces optimized native code 140 from
WCODE 124.

[0020] I, 1in step 202, loader 150 determines that debugger
160 1s 1n debugging mode, then in step 206 loader 150
retrieves non-optimized native code 122 from FAT binary

Dec. 28, 2017

120. Loader 150 loads non-optimized native code 122 1nto
memory for use by debugger 160 during the debugging
process.

[0021] Accordingly, by performing the operational steps
of FIG. 2, a developer can build a code with optimization
turned on, without the need to rebuild the code without
optimization for debugging purposes. By using a FAT
binary, loader 150 can automatically load a non-optimized
native code during the debugging process, so that the code
does not need to be rebwlt for debugging purposes. This
invention creates the option for developers to access the
non-optimized native code for debugging that i1s stored
within the release version of a program.

[0022] FIG. 3 1s a block diagram of internal and external
components of computing device 300, which 1s representa-
tive of the computing device of FIG. 1, 1n accordance with
an embodiment of the present invention. It should be appre-
ciated that FIG. 3 provides only an illustration of one
implementation and does not imply any limitations with
regard to the environments 1n which diflerent embodiments
may be implemented. In general, the components illustrated
in FIG. 3 are representative of any electronic device capable
of executing machine-readable program instructions.
Examples of computer systems, environments, and/or con-
figurations that may be represented by the components
illustrated 1n FIG. 3 include, but are not limited to, personal
computer systems, server computer systems, thin clients,
thick clients, laptop computer systems, tablet computer
systems, cellular telephones (1.e., smart phones), multipro-
cessor systems, microprocessor-based systems, network
PCs, minicomputer systems, mainirame computer systems,
and distributed cloud computing environments that include
any of the above systems or devices.

[0023] Computing device 300 includes communications
tabric 302, which provides for communications between one
or more processing unts 304, memory 306, persistent stor-
age 308, communications unit 310, and one or more mput/
output (I/0) interfaces 312. Communications fabric 302 can
be implemented with any architecture designed for passing
data and/or control information between processors (such as
microprocessors, communications and network processors,
etc.), system memory, peripheral devices, and any other
hardware components within a system. For example, com-

munications fabric 302 can be implemented with one or
more buses.

[0024] Memory 306 and persistent storage 308 are com-
puter readable storage media. In this embodiment, memory
306 includes random access memory (RAM) 316 and cache
memory 318. In general, memory 306 can include any
suitable volatile or non-volatile computer readable storage
media. Software 1s stored in persistent storage 308 for
execution and/or access by one or more of the respective
processors 304 via one or more memories of memory 306.

[0025] Persistent storage 308 may include, for example, a
plurality of magnetic hard disk drives. Alternatively, or in
addition to magnetic hard disk drives, persistent storage 308
can 1nclude one or more solid state hard drives, semicon-
ductor storage devices, read-only memories (ROM), eras-
able programmable read-only memories (EPROM), flash
memories, or any other computer readable storage media
that 1s capable of storing program instructions or digital
information.

[0026] The media used by persistent storage 308 can also
be removable. For example, a removable hard drive can be




US 2017/0371767 Al

used for persistent storage 308. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are iserted into a drive for transfer onto another
computer readable storage medium that 1s also part of
persistent storage 308.

[0027] Communications umt 310 provides for communi-
cations with other computer systems or devices via a net-
work. In this exemplary embodiment, communications unit
310 includes network adapters or interfaces such as a
TCP/IP adapter cards, wireless Wi-F1 interface cards, or 3G
or 4G wireless interface cards or other wired or wireless
communications links. The network can comprise, for
example, copper wires, optical fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge
servers. Solftware and data used to practice embodiments of
the present mvention can be downloaded to computing
device 300 through communications unit 310 (1.e., via the
Internet, a local area network, or other wide area network).
From communications unit 310, the software and data can be
loaded onto persistent storage 308.

[0028] One or more I/O mterfaces 312 allow for input and
output of data with other devices that may be connected to
computing device 300. For example, IO interface 312 can
provide a connection to one or more external devices 320
such as a keyboard, computer mouse, touch screen, virtual
keyboard, touch pad, pointing device, or other human inter-
tace devices. External devices 320 can also include portable
computer readable storage media such as, for example,
thumb drives, portable optical or magnetic disks, and

memory cards. I/O interface 312 also connects to display
322.

[0029] Display 322 provides a mechanism to display data
to a user and can be, for example, a computer monitor.
Display 322 can also be an incorporated display and may
function as a touch screen, such as a built-in display of a
tablet computer.

[0030] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

[0031] The computer readable storage medium can be a
tangible device that can retain and store mnstructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but 1s not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-

Dec. 28, 2017

guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0032] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface 1n each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program 1nstructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0033] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present 1nvention.

[0034] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams ol methods, apparatus (systems), and computer
program products according to embodiments of the mven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0035] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored




US 2017/0371767 Al

in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

[0036] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified 1n the
flowchart and/or block diagram block or blocks.

[0037] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable mnstructions for implementing the specified
logical function(s). In some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0038] The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the

Dec. 28, 2017

art without departing from the scope and spirit of the
invention. The terminology used herein was chosen to best
explain the principles of the embodiment, the practical
application or techmnical improvement over technologies
found in the marketplace, or to enable others of ordinary
skill 1n the art to understand the embodiments disclosed

herein.

What 1s claimed 1s:
1. A method for debugging optimized code, the method
comprising the steps of:
in response to receiving a source code of a program,
generating, by one or more processors, a FAT binary,
wherein the FAT binary contains a binary and an
intermediate code;

determining, by one or more computer processors,
whether a debugger 1s enabled;
in response to determining that the debugger 1s not
enabled, passing, by one or more computer processors,
the intermediate code to a program;
1n response to passing, by one or more computer proces-
sors, the intermediate code to the program, generating,
by the program, an optimized native code;
in response to generating an optimized native code, load-
ing, by one or more computer processors, the generated
optimized native code; and
wherein:
the binary 1s a non-optimized native code for a single
processor architecture.
the intermediate code 1s an internal representation of
the source code, and contains all semantic informa-
tion of the source code such that a user may perform
optimizations on the intermediate code;
loading the generated binary into a memory 1s based on
a determination of an enhanced loader whether to
load a non-optimized native code or an optimized
native code;
the optimized native code 1s optimized source code for
a single processor architecture; and
the program transforms the intermediate code into the
optimized native code.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

